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PRESSURE OF A STAMP OF ALMOST ANNULAR PLANFORM ON AN ELASTIC HALF-SPACE* 

A.B. KOVURA and V.I. SAMARSKII 

The generalization of the problem of the impression of an annular stamp 
without friction into an elastic half-space /l, 2/ is considered. The 
contact domain has an axis of symmetry and is a ring bounded by curves 
of almost circular shape. The half-space material is isotropic and 
homogeneous. Determination of the pressure under the stamp reduces to 
finding two functions of a complex variable, analytic in a circle, by 
means of boundary conditions of mixed type. The unknown constants on the 
right-hand sides of the boundary conditions are determined under the 
assumption that the dimensions of the holes in the stamp are small. The 
results from /3, 4/, referring to the case of annular or almost circular 
stamps, are essentially used here. 

1. A stamp with a flat base, whose side surface is formed by cylinders r = r, (cp) and 

r=ra (cp)(rz (~)Crl(cp), cp E [-x, al) is impressed without friction in an elastic half-space z>O. 
Outside the stamp the surface of the half-space is force-free. For a given settling of the 
stamp w,, determine the pressure p(r, 0) in the contact domain S, a non-circular ring r,'(p)< 

19 c 'la (0. 
Following /5/, the potential theory problem that occurs here for the half-space z>o 

can be written in the form 

*Prikl.Matem.MeJchan.,51,1,95-lo,1987 
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where v,(r,z,cp)(j = 1,2) areharmonic functions that decrease at infinity, whose boundary values 
of the normal derivatives are related to the contact pressure values by the formula 

p (i-, tp) = h IF,,' (r, 0, tp) i_ V,,’ (r, 0, rp)l, r E S; h = E 12 (1 - @)I--1 (1.2) 

(E is the modulus of elasticity and Y is Poisson's ratio). 
Without loss of generality, we assume the contact domain to have the axis of symmetry 

rp = 0. Then the equation r2 = rj2(Cp) and the harmonic functions Vi (r,z, cp) can be represented 
in the form 

V, tr, 2, CP) = 2 Vj, (r, z) cos kv 
k=0 

In the first relationship of (1.3) ccj<( 1 so that the curves 
are almost circles. 

In addition to Vj(r,z,cpf we introduce two harmonic functions 
into the consideration 

(1.3) 

bounding the contact domain 

in the half-plane Y>O 

(cp is a parameter), that decrease at infinity and satisfy the system of relations 

Qmy’ (3, 0) = V1;h.a’ (x, 0) 5, Qekx’ (5, 0) = Vm’ (xv 0) x (1.4) 
(O<xzzr<cm) 

The functions Vjk, Vjkr’ and Qjkt’, Qjkv’ are represented 
integrals /3/ 

vjk(r, Z)=&- 5 Mjk (s+ Z) E (s, k) P-1 dS 
e-im 

5 (8, x1) = z-” I? (‘i, - s/2 _t k/2)/ I’ (‘I, + 

. -i-i- n 

in the form of the contour 

(1.5) 

sl, + k/2) 

tl (z 4 += 
I’(‘/2 - s/2)/I’ (s/2), k = 0,2, . . . 

- T (1 - s/2)/F (l/z + s/a), k = 1,3, . . . 

The expression for Vjk.‘(r, Z) is obtained from (1.5) by replacing E(s, k) by E(s- 1, k), 
the expression for Qjkr'(z, y) is obtained from (1.6) by replacing q(s, k) by (-l)kq(s, k +- 1). 

Substituting these contour integrals into (1.4) and (1.1) , after algebra analogous to 
/3/, we obtain the boundary conditions for a potential-theory problem for a half-plane 

Qm (~2 0, 9) -i- Qzt’ (z, 0, 9) = 0, 0 c 5 -c ra OP), rl (9) -c 0.7) 
x<= 
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D (xv cp) in the boundary conditions (1.7). If a = mar {ra(cp)}+O, then the contact domain S 
under consideration goes over into an almost circular domain. The boundary value problem 
corresponding to this case for the function Q1(x,~,v) that is harmonic in the half-plane 

Y>O and is defined by the formulas presented above, will have the form /3/ 

Q&V' (s, 0, 9) = 2m-'[w, + T (3, cp)l, o< ix I< r, (tp) ,(Z.f) 

Qlar’ (5, 0, (P) = 0, rl (cp) < Ix I < 00 

T (2, fp) = * c$+;!, ( ) g- mX 

&, (m = 0,1) are coefficients in the equation of the contact domain boundary (1.3). 
Carrying out the passage mentioned in (1.7) and comparing with (2.1) we conclude that 

D(I, 'p)=O, B(z, cp)=T(s, 'p) (2.2) 
If a+o, the unknown constants in (1.7) will not generally be determined by (2.2). 

Nevertheless, confining ourselves to small values of the radius a(cmax {rl(m)fr we can assume 
approximately that the constants mentioned have the same values as in the limit case considered 
of an almost circular contact domain. Therefore, the boundary conditions (1.7) become quite 
definite. 

3. We will use the approach proposed in /4/ to find the harmonic functions Qjs' and Qjn' 
from the system of relations (1.7). 

By conformal mapping 

0 = r, (rp)i (l - 5) I (I - 5) (0 = x + iy, j = ye’*, p 2 0) 

of the half-plane y> 0 onto the circle 15161, we obtain a Riemann-Hilbert boundary 
value problem from (1.i) for the two functions 

F, = '1,s {Qjx’ [z (51, 1/(E)+ VI- iQjl’ [X (0, Y (CL ~~11 (i = 132) (3.1) 

which are holomorphic in a circle ] 5 /< 1 and dependent on the parameter q 

ImF,(t, q)-ReF,(t, cp)=O, O<@<+(tpf, dz<@<n 
ImF,(t, VP) + Rep,@, cp)=O, -*(cp)<6<0, 
-n<(6<--nl2 

(3.2) 

Since Qjx' and QllJ’ decrease at infinity, then F,(--1,(p)= 0. 
For the functions F,(c,cp) we use the representations 

(3.3) 

that take account of the nature of the singularities at the separation points of the boundary 
conditions (3.2). Here by virtue of the symmetry of the problem gk (cp) = Reg, (rp), bk (cp) = 
Rebh-(9). 

Substituting (3.3) into (3.2) we require that the relationships obtained by such means 
be satisfied at n equidistant points & = exp(i8,f (s = 0,1,..., n) of the upner semicircle 

;;;I$&< s) that do not coincide with the points of separation of the boundary conditions 

I and 6, # n/2). Then for every fixed value of cp we arrive at a system of linear 
algebraic equations-in gk and bk 
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Having calculated g, and bX, by using (1.21, (1.41, (3.1) and (3.3), the pressure under 
the stamp can be determined for the selected value of the angular coordinate 

4. The algorithm proposed to determine the contact pressures is realized on the ES-1022 

electronic computer for different contact domain shapes. We consider as examples below the 
cases of an elliptic stamp base with a circular bole and a squarelike base with an elliptic 
hole, The numerical results are obtained for n=44 and S, = X (s + I)/(?& -I- 2) (S = 0.1, . . . ., ?I; llpj 
(q) - %,I > wx + 41, 433 Id = ni2). 

The curves bounding the elliptic contact domain with the circular hole are determined 
by the equations (a,, a, are the ellipse semi-axes, aa<o,) 

~10 = JKC~?'~~, vj = 0 (j zz 1,3, 5, 7,9, il) 

The lines Z-5 in Fig.1 are equal-pressure lines 

p (r, cp) = =%J (r, tp)i(4hu,,) 

for a contact domain with linear boundary radius l$= 0.2 and a ratio of the boundary ellipse 
semi-axes h = 0.85 (a, = 0.1611) and correspond to the values P (r, cp)= 2,134, 1.962, 2,152, 2.549, 5.019. 

The contact pressure distribution on cp =0 is shown in Fiq.2 for different values of 
the inner boundary radius 1,. The quantities la- 0,1,0.2,0.3 and h:= 0.85 correspond to curves 
1-3. 

For a base of square type with elliptical hole the outer boundary of the contact domain 
is determined by the equation 

p = rla,, al = 1.1845, CzI = *is, I, = 1.0281 (I-1 

y,(l) = -_(57/58) ~,-a, yn(') = (3/28) I?,-*, B(r) = 0 fi = f, 2, 3, 5, 6, 7) 

The equation of the inner boundary has the form 

where a, is determined by the same expression as the parameter aI in (4.1). The quantities 

Yk”’ are connected With the coefficients y&in (4.1) by the relationships yk(*)= $yk (k= 1, 2,..., 

12), in which the factor B>O yields the characteristic size of the elliptical hole, the semi- 
axis p,(O)= j3 and also the radius Z, of the circle close to the ellipse 



Theequalpressure lines 1-5 in Fig.3, constructed for 6=0.2, correspond to the values 

p (P. cp) = 2,146, 2.189; 2.467, 3.159, 4.182. 
Fic.4 shows contact pressure diagrams on the axis cp= 0 for different elliptical hole 

sizes. -The values 3 = O.i,O.15, 0.2 correspond 

'I-r----l 

to cur ves 1-3. 

Fig.1 Fig.2 

Fig.3 Fig.4 

For the case considered above of a stamp of elliptical planform with a small-radius 
circular hole the values of P(p,cp) obtained were compared with the contact pressure values 
P,(p,cp) found by another method /6/. Values (in percent) of the relative error 6=11 --p,(P, 

cp)@ (P, cp) I are shown in the table. The data corresponding to h=0.85 and Is = 0.2 reflect 
the typical nature of the behaviour of the quantity 8 within the contact domain: the error 6 
increases on approaching the inner and outer boundaries, as well as with distance from the 
axes of symmetry cc=0 and 'p = ni,? of the contact domain. The data obtained for l4=rd4 
show how the eccentricity of the outer boundary (the ratio L) and the radius I, of the inner 
boundary influence the magnitude of the error 8: an increase in the eccentricity a decrease 
in L) exactly as the growth of Z,,increases the discrepancy between corresponding values of 

p (P, cp) and P, (P, cp). 
Table 1 

h = 0.85; I, = 0.2 1, =o.g cp =a/& X=0.85; m=x/l 
P 

m-0 1 n/3 1 n/h ( 3w8 1 x/2 h =O.B( 0.8 1. = 0.1 1 0.3 

0.22 9.54 7.59 5.44 9.ii 

0.25 3.25 1.56 1.69 

f*:: 

0:25 2.08 0.85 3.10 0.35 O.fl 0.26 0.95 0.05 0.55 0.72 00.;: 2.35 
0.55 0.14 0.56 0.94 0.53 0.21 0.71 1.28 0:si 1.40 
0.75 0.21 X*$ ::: 1.26 0.83 0.99 2.i4 1.62 
0.85 0.39 

5:26 
5,64 1.74 4.38 

Xz 
2.35 

0.95 1.34 

On the whole, calculations show that for 0.8<b<l and 0<1&<0.3 the error 6 does not 
exceed 2.5% in the major part of the contact domain, which indicates good agreement between 
the two different approximate solutions. 

The authors are grateful to V.I. nossakovskii for his interest. 
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CERTAIN CONTACT PROBLEMS OF THE THEORY OF ELASTICITY 
FOR AN ANNULAR SECTOR AND A SPHERICAL LAYER SECTOR* 

M.I. CHEBAKOV 

ltyo static contact problems of the theory of elasticity on the impression 
of a stamp in the circular boundary of an annular sector (Fiq.l), and 
in the spherical surface of a spherical layer sector (Fig.2) are examined. 
By using homogeneous solutions the problems are reduced to an investiqation 
of the well-studied integral equations that occur in the investigation 
of analogous problems, respectively, for a ring and a spherical layer, 
and infinite systems of linear high-quality algebraic equations of the 
type of the normal Poincar&Koch systems. 

A proof is also presented of the generalized orthogonality relationships (GOR) used for 
homogeneous solutions of the theory of elasticity on the steady vibrations of a spherical 
layer in the case of axial symmetry and a rinq. In a special case, the GOR for a spherical 
layer agrees with those already known /l/, where the static problem is considered. Analoqous 
GOR for a ring are proved by another method in /2, 3/, where the GOR are derived in /3/ as a 
corollary of the Betti reciprocity theorem for a broad class of media and domains. 

The GOR are derived below as a corollary from values of a certain integral of the 
combination of two different solutions of the Lam& equation in the qeneral case with arbitrary 
boundary conditions. The value of the integral is expressed in terms of boundary functions 

/4/. Values of the integral of both the homogeneous (generalized orthoqonality condition), 
and the inhomogeneous solutions are used in deriving the infinite systems. 

Fig.1 Fig.2 
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